
Daino

This ReadMe lists the principles which guided the design of daino

Design of daino was guided by some principles which are explained in this ReadMe.

Part I.

No proprietary file formats
The source of the web site is formatted with common, non-proprietary

formats.

The source of the web site should be stored in open file formats, which can be exchanged
and read by many programs. It should be easy to take a site organized with one SSG
and put it into another one. Proprietary formats make it typically hard to extract
content, store it in an open format, and to move it to another program --- effectively
locking users in.

The principle speaks against use of databases to store content (so called Content
Management Systems) which are probably justified for large, very high traffic sites, a
use case, daino is not design for.

Daino organized the source for a web site in text files written in Markdown; they
can be edited with any simple text editor1.

Part II.

Daino organizes a site as a tree
The web pages are structured as a tree and collected in a directory tree.

1Using a intelligent editor like Word is inconvenient; VS code however works well.

1



1. Principle: The structure of the site and the
structure of it is stored representation should
correspond

A web site is presented as pages of hyper-text with links between the pages(Berners-
Lee, Hendler, and Lassila, 2001). This logical structure is represented as files and the
whole site is collected under a root directory.

The mapping between rendered web pages and the files representing them is crucial
in the design:

Each web page is stored as a markdown file.2

Each web page in a site is written as a markdown file, which the generator transforms
to a HTML file which can be rendered. The structure of the source (dough) of the
web page is parallel to the directory structure of the baked homepage, which can be
served by a web server and rendered by a browser.

A markdown page can call for additional material and link to other renderable
pages not produced from a markdown page.

1.1. Tree structure
The web site starts with a single page3 from which all other pages can reached in a
tree structure.

The web pages are stored as files in directories. The directory tree starts with the
root (here dainoSite/dough) which contains all the source text for the web pages4.

Directories store only files and additional information for the presentation of the
directory as web page is necessary. For each directory an index.md file is added which
comments on the directories content and the list of directories is rendered.

Additional content can be stored in resources directories5

1.2. Correspondence between presentation and storage
The source for web pages, and the web pages in HTML formate are stored in a parallel
directory structure and correspond to the structure of the web site visible to the user.

Part III.

Pandoc converts from markdown to HTML
The sources of the web pages are (primarily) written as markdown and

converted by Pandoc to HTML.

2Additional material can be stored in files in a resources directory.
3Often called landing page.
4It contains an additional file settingsNN.yaml, currently settings3.yaml for the site.
5Which must be called resources, allother directories are assumed to be conent directories!

2



1.3. Source files are converted to HTML using Pandoc
The web page sources are translated using Pandoc to HTML and PDF. Pandoc is
equally used to convert the markdown sources to latex and then to PDF.

Pandoc would allow three dozens of input formats. At the moment, page sources
must be written in the Pandoc markdown language, but essentially any other input
Pandoc can read could be used (e.g. latex).

2. Shake controls the conversion
Shake is an improved make producing a desired set of files from sources and rules. It
is driven by the correspondence between the md files which must be converted to HTML
and draws in additional files as necessary. It converts files only if changed; files can be
watched for changes and automatically converted.

Part IV.

Help with language specific input
Various conventions to speed up textual input exist and can be sup-

ported; currently support for german text input is built in.

Various conventions to type text in non-english languages exist. For example, it is
customary to type combinations of American keyboard characters to stand in for
those which are not found on the standard American keyboard. For example, when
typing a German text, often the umlaut ä, ö and ü are written as ”ae”, ”oe” and
”ue”. Unfortunately, it is not possible to just use a global replace, because some
German words contain some such combinations (e.g. Koeffizienten) which must not
be written as Köffizienten! Similar conventions exist in other languages to type, e.g.
email on standard keyboards. Italians, for example, replace an accented character with
a appended apostrophe (italianita').

Daino includes a support program for german language writing which is automati-
cally applied to German texts and replaces umlauts when acceptable. It uses a small
list to guide the process, which is not perfect. Omissions can be edited manually and
are not affected by later replacements. Commissions must be - on a file by file base -
collected in type YAML header as doNotReplace list6. Such a list remains with the
file and need only updated when text is added and the replacement process produces
undesired changes.

6Specifically useful to allow some english words, like ”blue”, in a German text!

3

https://pandoc.org/MANUAL.html


Part V.

Markdown as primary input format
The web pages are written as markdown text, which allows emphasis,

titles, references, images, footnotes etc.

Markdown is an easy to learn and versatile. The list possible formatting is quite
comprehensive:

”Markdown may not be the right format for you if you find these elements not
enough for your writing:

• paragraphs,
• (section) headers,
• block quotations,
• code blocks,
• (numbered and unnumbered) lists,
• horizontal rules,
• tables,
• inline formatting (emphasis, strikeout, superscripts, subscripts, verbatim, and

small caps text),
• LaTeX math expressions,
• equations,
• links,
• images,
• footnotes,
• citations,
• theorems,
• proofs, and
• examples.”7

In exceptional circumstances additional formatting tricks can be pulled in as HTML
code.

3. YAML header
Markdown allows headers to pass metadata about a file (e.g. title, author) in a YAML
to processes working on the source text; the format is flexible8.

7Bookdown.
8But beware of colons, quotes etc.!

4

https://yaml.org/spec/1.2.2/
https://bookdown.org/yihui/rmarkdown/#preface


4. Markdown can include images, reference etc.
Markdown allow the inclusion of images, bibliographic references etc. These additional
files are stored in resources directories9.

References are always absolute with respect to the root10 or relative to the
current page11.

Part VI.

Separate content and presentation (aka
theme)

The content of the web pages should be indpendent of the presentation.

5. Presentation can be changed
A change in the presentation style should not affect the content. It must bepossible to
move from fixed-width presentation to a presentation which adapts to different screen
sized and later to use a Tufte-inspired style without touching the web page content.

Markdown allows to structure the content with hints for the presentation (e.g. title,
footnote) but not fixing how these are rendered.

6. Theme directory
The instructions for presentation, the so called theme is in a separate directory (here
‘dainoSite/theme). It is linked automatically into the baked site.

The theme consists of

• fonts, preferably in the woff format,
• images
• cascading style sheets (CSS) in static folder.

The elements are brought together with the content using the Pandoc templates and
a template to construct a LaTeX input file to produce the PDF.12

9resources is a reserved word; all other directory names are treated as content directories
10starting with a ”/”
11not starting with ”/”
12Currently master7tufte.dtpl for HTML output and latex7.dtpl for PDF output.

5

https://hackage.haskell.org/package/pandoc-3.1.1/docs/Text-Pandoc-Templates.html


Part VII.

Produced web site is self-contained
The Static Site generated is selfcontained. It can be served by any web

server.

The files in the baked directory includes everything a web server needs to access and
is relocatable. It can be copied to become the web root of a server.

Any web server to which a user can upload files to the web root can be used.13

References
Berners-Lee, Tim, James Hendler, and Ora Lassila (2001). “The Semantic Web”. In:

Scientific American 284.5, pp. 28–37.

Produced with ‘daino’ (version Version versionBranch = [0,1,5,3], versionTags = []) from /home/frank/Workspace11/dain-

oSite/ReadMe/index.md

13I currently use a service giving my a cpanel to which I can upload with ftp; perhaps not the most
convenient solution but sufficient.

6


	No proprietary file formats
	Daino organizes a site as a tree
	Principle: The structure of the site and the structure of it is stored representation should correspond
	Tree structure
	Correspondence between presentation and storage


	Pandoc converts from markdown to HTML
	Source files are converted to HTML using Pandoc
	Shake controls the conversion

	Help with language specific input
	Markdown as primary input format
	YAML header
	Markdown can include images, reference etc.

	Separate content and presentation (aka theme)
	Presentation can be changed
	Theme directory

	Produced web site is self-contained

